
NOTATION 

R, radius of bubble; r, e, spherical coordinates; Vr, ve, radial and longitudinal 
velocity components; z, vertical coordinate; U, velocity of rise of bubble; Po, Pl, pres- 
sure~ ~o, ~, coefficient of volume expansion; Po, P~, density; ~o, ~, dynamic viscosity; 
ao, a~, thermal diffusivity of liquid and vapor, respectively; c, surface tension; Tr0 , Trr , 
tangential and normal stresses; D, resisting force; E(x, r), F(x, r), elliptic integrals 
of the first and second kinds; z=y/R; x = z sin2e; Vo =vo,8/U; v~ =vle/U; Fi=v isinS; ~i= 
~i/Pi~ CD= 2D/(~poU2R2)~ Rei= 2RU/~i; Pri =~i/ai~ Pei=ReiPri ; Gr i=gBi x (dA/dz)R4/~; Fr = 

8gR~/~; Ma = 2 d--Td~ dAd__z_ R/voao; ~(x)-- ~2 S exp(--s2) ~* = 1 - -  ~ ;  iO*(x): i Subscript i = 0.i. 
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FREE CONVECTION IN A GRAINY LAYER ALONG 

A VERTICAL WALL 

D. A. Narinskii UDC 536.244:541.182.8 

A solution based on the integral thermal balance equation is offered. 

We propose an approximate analytical solution of the problem of free convection produced 
by the temperature difference between a wall and a liquid filling an immobile grainy layer 
of solid elements. The solution obtained is also applicable to the process of mass exchange. 

We make the following assumptions in considering the problem. 

i. Liquid convection in the layer occurs in the region of dominance of viscosity 
forces. 

2. The temperature difference in the layer is not large, so that the physical param- 
eters of the liquid (aside from density) are temperature independent; the density is a 
linear function of temperature. 

3. The temperatures of grains and liquid are identical, i.e., the layer is considered 
as a quasihomogeneous medium [i, p. 103]. 

4. Thermal conductivity in the layer along the liquid flow and thermal resistance at 
the wall [I, p. 127] are neglected. 
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This last assumption will be evaluated below. 

The heat-exchange process between the wall and the grainy layer is described by the 

equations 

pcpw~ -~x + pcpwy OV Ox ~x ; 

Ow~ ~- Owv --0; 
Ox Og 

(l) 

(2) 

Ap C C 
w~, . . . .  gl~ ( t - -  to) - -  

I 1~ vo (3)  

with boundary conditions: 

at  x = O ,  y~>O t =  tw, Wx=O; 

at X---~oo t-+to, w--+O. (4) 

For the effective thermal conductivity coefficient of the grainy layer, we will use 
the function [i, p. 112] 

~x/~g = Xo/~g+Bo RePr,  (5) 

in which the Reynolds number Re=wyd/~, Bo is a proportionality coefficient of order of 
magnitude 0.i. 

In dimensionless form, the problem appears as 

do O@ O [  a@ ] (6) 
W ~ - ~  + Wv aY - ax  (1/Ra + Bogy) -~- ; 

OW~ + aw v - o ;  (7) 
ax a Y  

with boundary conditions 

W u = 0 (8) 

at X = 0 ,  Y [ 0  O =  I, W x = 0 ;  

at X-+oo  O->0, W---~0, 

where the following notation is used: 

X=x/d; Y=yld; W=mld; O :  t--to 
t w -- to 

R a = G r P r  C )~r . Gr=g~(tw--to)dS 
2 d ~ ;~o re, 

(9) 

(io) 

The value of w w is defined by Eq. (3) at t = tw: 5:r a quasihomogeneous grainy layer 
the condition of adhesion of the liquid flow to the wall is not introduced, since all param- 
eters in the layer are averaged over volumes la::ger than the volume of an individual grain. 
The ratio @/Po~l in accordance with assumpti<m 2. 

To obtain an approximate analytical solution we will use the integral thermal balance 
equation for the liquid flow near the wall 

~'x -d-xx x=o dy 
0 

In dimensionless form 

9cpwv (t'-- to) dx. (ii) 

Nu*/Ra -= (1/Ra + Bo) d_~ i d 
I x=o = d Y  

(" 02dX, 
0 

(12) 

where the modified Nusselt number Nu* =ad/%o. 
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The form of the function which satisfies Eq. (12) and boundary conditions (9) may 
be found by analyzing Eq. (6). If we assume that in some region of space the terms on the 
left side of the equation are close to each other in magnitude, then for i/Ra << Bo we obtain 
the simple equation 

dO z ~0~ 
- -  = 0.5Bo - - ,  (13) 

d Y  d Y  ~ 

a solution of which is given by the Gaussian error function [2, p. 74] 

0 2 = eric z. (14) 

It is simple to prove that this function also satisfies Eq. (12), i.e., the desired 
solution has the form 

X ]o.s; 
e =  eric ] /2(1/Ra-i-Bo) Y " 

Nu, = ( 1/Ra + Bo ) ~ 
2 a Y  Ra. 

The mean value of the Nusselt number over length 

Nu*=-- { 1/Raq- B~ ~ ~ Ra; ~ 7-75-k-L 7 ] 

K =  N---u* ~ L -  = (1/Ra q- Bo) ~ Ra. 

for BoRa))l  K = V ~ o R a ;  

for BoRa (( 1 K = Ra ~ 5 

(15) 

(16). 

(%7) 

(18) 

(19) 

(20) 

In the latter case the heat liberation coefficient ~ is independent of the characteris- 
tic dimension of the system d, inasmuch as it was assumed that the thermal conductivity of 
the layer is independent of the speed of liquid motion. For this case Taunton and Lightfoot 
[3] used numerical methods to obtain a solution of Eqs. (1)-(3) in the form 

K = I.II Ra ~ (21) 

Thus, the approximate solution of Eq. (20) differs from the exact one by 10%. 

We will determine the limits of applicability of the formulas obtained. It follows 
from Eqs. (3) and (i0) that 

C s  (22) Rew - - -w w d / v = o r  d--g ; R a = R e w P r - ~ .  I 

A l a m i n a r  f low reg ime  e x i s t s  i n  t h e  l a y e r  f o r  Re < i ,  bu t  we may assume a p p r o x i m a t e l y  
that Eq. (3) is realistic up to Re= i0 [i, p. 60]. Taking for a gas %o/~g~7 [I, p. i07], 
we obtain the limiting value of the Rayleigh number Ral~l. For cold water Ra~50. For 
a laminar flow regime the value of the coefficient Bo is approximately twice as small as 
for a turbulent regime [4], i.e., Bo~0.05, while for gases Eq. (20) is valid. For water, 
the convective component of the thermal conductivity coefficient in the layer may be compar- 
able to the constant component %o even in the laminar fl0w regime. For viscous liquids the 
value of Ra~ may be greater than i00, in which case Eq. (19) applies. 

With regard to mass exchange, the value of the constant component of the diffusion coef- 
ficient is small, Do/Dg = 0.27 [i, p. 89] and the convective component must be considered 
even for gases. 

On the basis of the approximate solution obtained, Eq. (15), we will find the condi- 
tions under which thermal conductivity along the liquid flow need not be considered. To 
do this we compare the two terms of the differential equation 
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For large values of Ra, calculations show a ratio for the regionO > 0.i 

M/N < 2.4BoJY. (23) 
Longitudinal convective transfer in a laminar flow regime is characterized by the 

quantity Boe=0.25 [i, p. i00]; even at Y> i0 it may be neglected. 

For small values of Ra in the region O > 0.25 

M/N < 8.5/t~a Y. (24) 

A ratio M/N < 0.i is acheived at Y > 85/Ra. Thus, Eq. (20) is applicable only for suffi- 
ciently large L or at Ra not too far removed from unity. In the opposite case one must 
introduce into differential equation (6) the term M, not considered in the present solution 
or that of [3]. 

For heat liberation at the wall (within the limits of a hydrodynamic boundary layer at 
the wall) in [i, p. 138] formulas were presented which can be written in the parameters used 
herein as follows: 

( %g)0.5 ~o N-u~c---o~wd/ho,~i.5+O, SgRe~ l/a: 1.5-I-0.55 Ra Pr -I/6. (25) 

For mass exchange, the constant component is absent from Eq. (25). 

Calculations show that at Ra < 1-2 and L > 20-30 the value of Nu* is an order of magni- 
tude higher than ~u* and additional thermal resistance at the wall n~eed not be considered. 
Resistance to mass transfer need not be considered at L > 60-100. For values of Ra and L of 
the order of 102 the value of ~u* becomes comparable to ~u*. 

as 

In the general case, resistance to transfer at the wall can be considered approximately 

~ = O/N-~* + I/~)-~ (26) 

In an exact solution of the problem it would be necessary to introduce a boundary con- 
dition of the third sort with consideration of Eq. (25). 

In the formulas obtained the structure of the grainy layer was defined by the quantity 
C, the size of the elements by d, while the coefficient Bo = 0.05 was taken for elements of 
round form with a layer porosity s = 0.4. If the layer structure differs greatly from that 
indicated, or the layer is polydispersed, then it is desirable to choose as the characteris- 
tic dimension of the system, upon which the intensity of convective transfer in the flow 
depends, not d, but the equivalent diameter d e = 4~/a, where the surface of the elements a 
can be calculated from knowledge of their form and distribution over size [i~ p. 14], or 
can be determined experimentally, simultaneously with the permeability [i, p. 50]. In this 
case the quantity Bo is replaced by B/~; the coefficient B may be considered independent 
of c and close to Bo for e =0.4 [i, pp. 95, 123]. 

NOTATION 

a, grain surface in unit volume of layer; Bo, proportionality coefficient in Eq. (5); 
c~, specific heat of liquid; C layer permeability coefi1clent, m ; d, mean grain diameter; 
~, wall height, t, temperature of grainy layer and liquid; to, same temperature far from 
wall; tw, wall temperature; w, liquid filtration rate; x, coordinate perpendicular to wall; 
y, vertical coordinate; ~, heat-exchange coefficient between wall and grainy layer; ~, 
volume expansion coefficient of liquid; e, layer porosity (fraction of voids)~ Ap, pressure 
drop in layer; %, effective thermal conductivity coefficient in layer; %o, same coefficient 
for immobile liquid; %g, thermal conductivity coefficient of liquid (gas); ~, dynamic vis- 
cosity of liquid; ~ kinematic viscosity of liquid; p, density of liquid; po, density far 
from walls Gr, Grashof number, referenced to d; Nu*, modified Nusselt number calculated 
from value of %o; Pr, Prandtl number for liquid at to; Ra, Rayleigh number, referenced to 
d; Re, Reynolds number for liquid flow in layer; X, Y, L, dimensionless counterparts of x, 
y, ~, referenced to d. 

43 



li 

2. 

3. 

4. 

LITERATURE CITED 

M. E. ~erov, O. M. Todes, and D. A. Narinskii, Devices with a Stationary Grainy Layer 
[in Russian], Khimiya, Leningrad (1979). 
A. V. Lykov, Theory of Thermal Conductivity [in Russian], Vysshaya Shkola, Moscow 
(1967). 
J. W. Taunton and E. N. Lightfoot, "Free convection heat or mass transfer in porous 
media," Chem. Eng. Sci., 25, No. 12, 1939-1945 (1970). 
D. J. @unn, "Theory of axial and radial dispersion in packed beds," Trans. Inst. Chem. 
Eng., 47, No. i0, 351-359 (1969). 

DROPLET BREAKUP REGIMES AND CRITERIA 

FOR THEIR EXISTENCE 

A. A. Borisov, B. E. Gel'fand, 
M. S. Natanzon, and O. M. Kossov 

UDC 532.529.5/6 

An analysis of experimental and theoretical studies of droplet breakup by a gas 
flow in shock tubes and nozzles is presented. A system of criteria defining 
droplet breakup regimes is developed. 

When fuels are burned in various pieces of equipment it becomes necessary to analyze 
intermediate stages of preparation of the fuel mixture for ignition in the reaction zone. 
The processes of evaporation have been studied thoroughly and methods are available for 
their calculation, but the phenomenon of fuel atomization has been studied much less com- 
pletely. 

In the great majority of power devices production of useful work is accomplished by 
conversion of the chemical energy of the fuel into thermal energy, a process which usually 
occurs in a multiphase flow. The net velocity of the generally quite complex process of 
combustion of a liquid fuel is determined by the velocities of the elementary processes 
which occur: heating, evaporation, and atomization of liquid components, mixing and chemi- 
cal reactions in the gas phase. For a proper description of the conversion process it is of 
extreme importance to know the principles by which these elementary processes operate. 

One of the elementary acts having a great effect on the dynamics of the overall cycle 
is the process of droplet breakup in the gas flow. Acceleration of the two-phase flow, 
produced by geometric or thermal factors, leads to the appearance of a relative velocity 
between phases. Under the action of aerodynamic forces droplet deformation occurs, leading 
to droplet destruction [1-29]. The process of droplet and liquid jet breakup has been con- 
sidered from such a position by many authors, beginning with Rayleigh [6, 8-11, 13, 21-23, 
26-29]. In those studies it was shown that droplet and jet destruction occur under the 
condition that the Weber number exceed some critical value 

W = pu~d/2~>W *, (i) 

where W* is the critical value of the Weber number. 

It should be noted that the Weber number is not the unique criterion determining drop- 
let behavior in a gas flow: depending on experimental conditions, its critical value varies 
over the range W* = 3-25 [6, 10-12, 16, 21, 22]. In the most general case W* depends on the 
liquid viscosity [i0], droplet diameter [7], and also upon the time for which the gas flow 
acts upon the droplet [14]. 

When Eq. (i) is satisfied in energy devices with intense heat supply, it is possible 
for secondary fuel droplet breakup to occur [1-3]. In determining the critical Weber number, 
until recently little attention was paid to how droplet breakup and deformation occur. At 
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